

Mark Scheme (Results)

Summer 2024

Pearson Edexcel International GCSE In Mathematics B (4MB1) Paper 02R

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2024
Question Paper Log Number P73497A
Publications Code 4MB1_02R_2406_MS
All the material in this publication is copyright
© Pearson Education Ltd 2024

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded.
 Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
 - Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark

M marks: method marks

A marks: accuracy marks

B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- o cao correct answer only
- o ft follow through
- o isw ignore subsequent working
- o SC special case
- o oe or equivalent (and appropriate)
- o dep dependent

- o indep independent
- awrt answer which rounds to
- eeoo each error or omission
- cas correct answer scores full marks (unless from obvious incorrect working)
- o wr working required

No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

With working

If the final answer is wrong always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review.

If there is a choice of methods shown, then award the lowest mark, unless the subsequent working makes clear the method that has been used.

If there is no answer achieved then check the working for any marks appropriate from the mark scheme.

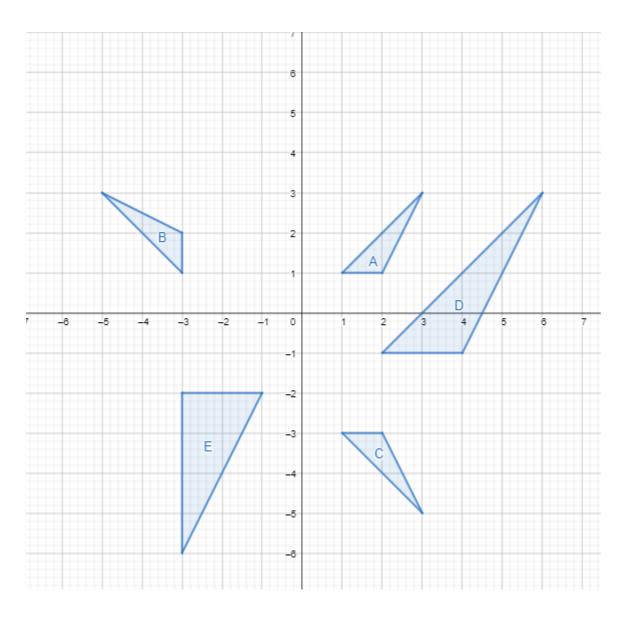
Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and subsequently write it incorrectly as their final answer; mark the correct answer.

Parts of questions


Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

Ques	tion	Working	Answer	Mark	Notes
1	(a)	$\frac{42}{7} \times 2 \text{ oe or } \frac{42}{7} \times 9[-12]$ or eg $\frac{2}{7} = \frac{t}{42}$	12	2	M1 for a correct method to find number of tables or total number of tables and chairs or setting up a correct equation to find the number of chairs May be seen within a ratio ie 12:42 A1 cao
	(b)	$\frac{276 - 240}{240} [= 0.15] \text{ or } \frac{276 - 240}{240} \times 100 \text{ or}$ $\frac{276}{240} [= 1.15] \text{ or } \frac{276}{240} \times 100 [= 115]$	12	2	M1 for a correct method to find the % profit May use multiple number of tables $eg \frac{12 \times 276 - 12 \times 240}{12 \times 240}$
			15(%)		A1 cao
	(c)	$\frac{513}{1.35}$ oe		2	M1 for a correct method to find the price they were bought at Allow $x + 0.35x = 513$ oe eg $\frac{513 - x}{x} \times 100 = 35$ or $135\% = 513$ or $135\%x = 513$ or $x + 35\%x = 513$
			(\$)380		A1 cao
	(d)	$732 \times 0.95 = 695.4(0)$ or $\frac{684}{0.95} = 720$ oe		3	M1 for a correct conversion
		"695.40" – 684 [= 11.4(0)] or 732 – "720" [= 12] oe			M1 for a correct subtraction "695.4(0)" and "720" must come from a correct calculation
			11.4(0) euros		A1 oe eg €11.4(0) or 12 dollars
			or		For a correct value with the correct units
			\$12		ISW
		cas for each part			Total 9 marks

Question	Working	Answer	Mark	Notes
2 (a)	$\frac{4 \times 180 - 4 \times 125}{2} [=110] \text{ oe eg}$ $\frac{(2 \times 6 - 4) \times 90 - 4 \times 125}{2} [=110]$ or $360 - 2 \times 125 [=110] \text{ oe eg } 2 \times (180 - 125) [=110]$ or $\frac{360 - 4 \times (180 - 125)}{2} [=70] \text{ oe}$		5	M2 for correct method to find one of the unknown interior angles of the hexagon could use sum of interior angles or symmetry in the hexagon (eg line drawn from C to L) or for correct method to find the exterior angle (at C or L) of the hexagon can be implied by a correct calculation for y (If not M2 then M1 for: finding the angle sum of the hexagon eg 4×180 [= 720] or $(2 \times 6 - 4) \times 90$ [= 720] oe or finding one exterior angle of the hexagon eg $180 - 125$ [= 55] or use of symmetry in the hexagon (eg line drawn from C to L) and finding BCL or DCL or CLA or CLE eg $\frac{360 - 2 \times 125}{2}$ [= 55] or $180 - 125$ [= 55]
	eg $\frac{(8-2)\times180}{8}$ [=135] oe eg $\frac{(2\times8-4)\times90}{8}$ [=135] or $\frac{360}{8}$ [=45]			M1 for finding one interior angle of the octagon or for finding one exterior angle of the octagon can be implied by a correct calculation for y
	eg 360 – "110" – "135" or "70" + (180 – "135") or "70" + "45" or "45" + (180 – "110") oe			M1 (dep on all previous method marks awarded)
		115	-	A1 cao
(b)	$10x + 25 + 7x - 83 = 180 \text{ oe eg } 17x - 58 = 180$ $[x =] \frac{180 + 58}{17} [= 14]$ $\frac{360}{7 \times "14" - 83} \text{ or } \frac{360}{180 - (10 \times "14" + 25)}$		4	M1 for a correct equation in x M1 (dep on first method mark) for a correct expression for x M1 ft dep on M1 ft their value of x provided x is from $\frac{180+58}{17}$ or clearly labelled as x
		24		A1 cao

ALT (b)	eg $T(7x-83) = 360$ and $T(10x+25) = 90(2T-4)$ oe eg $T(7x-83) = 360$ and $T(10x+25) = 180(T-2)$ or $7x-83 = \frac{360}{T}$ and $10x+25 = \frac{180(T-2)}{T}$		M1 for setting up two equations in x and T Allow the use of any letters for T and x provided they are not the same
	eg $7Tx = 360 + 83T$ oe and $10Tx = 90(2T - 4) - 25T$ oe eg $x = \frac{360 + 83T}{7T}$ oe and $x = \frac{90(2T - 4) - 25T}{10T}$ oe eg $70Tx = 3600 + 830T$ oe and $70Tx = 630(2T - 4) - 175T$ oe		M1 for making $7xT$ or x the subject of each equation or for coefficient of xT the same in both equations or for correct rearrangement of one equation followed by correct substitution into the other Allow the use of any letters for T and x provided they are not the same
	eg $1260T - 175T - 830T = 3600 + 2520$ oe	24	M1 for collecting <i>T</i> terms on 1 side and numbers on the other in a correct equation Allow the use of any letters for <i>T</i> and <i>x</i> provided they are not the same
	cas for each part	24	A1 cao Total 9 marks

Question	Working	Answer	Mark	Notes	
In this que	stion ignore any (incorrect)	labelling of triangles			
3 (a)		Rotation	3	B1 allow rotate, rotated, rotation do not accept turn B0 if multiple transformations stated. Multiple transformations are when more than one of refl rotation (turn), translation (move), enlargement (stretch eg a vector or SF or equation of a line do not imply multiple transformation (move).	squash) is stated
		90[°] [anticlockwise]		B1 oe eg 270 clockwise or –270 Do not allow 90 clockwise or –90 or –90 anticlockwise	These two marks can still be awarded if multiple
		(-1, -1)		B1 must be a coordinate and not a vector Do not allow if another coordinate is given as well	transformations are stated
(b)		Correct triangle C at $(1, -3)$, $(2, -3)$, $(3, -5)$	2	B2 Fully correct triangle. Award 2 marks for a correct triangle drawn, irrespective working space. (B1 for correct line drawn or a triangle of the correct states for 2 correct vertices plotted correctly or 3 correct vertices SCB1 for triangle B reflected in the line $y = -1$ (vertices $(-3,-3)$) or for triangle A reflected in the line $x = -1$ (vertices $(-3,-3)$)	ize and orientation, or ices listed) $(-3,-4) (-5,-5))$
(c)		Correct triangle <i>D</i> at $(2, -1)$, $(4, -1)$, $(6, 3)$	2	B2 Fully correct triangle. Award 2 marks for a correct triangle drawn, irrespective working space. (B1 for a triangle of the correct size and orientation, or for 2 correct vertices plotted correctly or 3 correct vertices	of working in the
(d)	Points can be in any order $\begin{pmatrix} -2 & 1 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 3 \end{pmatrix}$		3	M1 for intention to multiply the correct way, can be imp matrices in the correct order or correctly stating or plotti	
	Points can be in any order $ \begin{pmatrix} -1 & -3 & -3 \\ -2 & -2 & -6 \end{pmatrix} $			M1 for at least two correct columns or correctly stating of	or plotting two points.
		Correct triangle E at $(-1, -2), (-3, -2), (-3, -6)$		A1 Fully correct triangle Award 3 marks for a correct triangle drawn, irrespective working space.	of working in the
cas for each	ı part				Total 10 marks

Question	Working	Answer	Mark	Notes
4(a)	$4x \le 31 - 3 \text{ oe or } x + \frac{3}{4} \le \frac{31}{4}$		2	M1 for isolating the x term or reducing for x May be the wrong inequality sign or an = sign Also allow for a critical value of 7 with incorrect sign
		<i>x</i> ≤7		Aloe eg $(-\infty, 7]$ or $[-\infty, 7]$ do not isw $x = 7$
(b)		-1 < x < 9	2	B2 or other correct notation eg $(-1, 9)$ or $-1 < x$, $x < 9$ or $-1 < x$ and $x < 9$ or $-1 < x \cap x < 9$ (B1 for one end correct or for " $-1 < x$ or $x < 9$ ")
(c)	A single line joining $x = -1$ and $x = 7$		2	M1 Do not allow lines with arrows at end points or identification of any other values
	-2 -1 0 1 2 3 4 :	5 6 7 8 x		A1 Both end points identified using the correct symbols and one correct line drawn between the two correct points
	cas for each part			Total 6 marks

Question	Working	Answer	Mark	Notes
5(a)		-3, 0, 9	2	B2 all values correct (B1 for 2 values correct)
(b)			2	M1 for at least 5 points plotted correctly ±1 small square or for at least 4 points plotted correctly ±1 small square and a smooth curve drawn through all their plotted points If you are unable to see the points plotted then allow if curve goes through them within/on the circles.
		Correct graph		A1 for fully correct graph ±1 small square. Do not allow straight line segments
(c)			2	M1 for the line $y = 2$ drawn on the grid that goes from at least $x = -1.5$ to $x = 1.3$ and intersects the curve at all points at which $y = 2$
		-1.7, 0.2, 1.5		A1 dep on M1 and M1 being awarded in part (b) (condone straight line segments for this part of the question) For all 3 values and no extras Allow -1.9 to -1.5 and 0 to 0.4 and 1.3 to 1.7 A0 if values are given to >2dp or if answers given as coordinates or y values given as well as x values or if answer is given as an inequality Do not isw so if -1.7 , 0.2, 1.5 then $-1.7 < x < 1.5$ A0 For reference values from calc are $x = -1.672981648$, 1.469617434, 0.2033642138
	(a) cas (b) cas (c) wr			Total 6 marks

Question	Working	Answer	Mark	Notes
6 (a)	8 17 9 14 2 16 L	Correctly completed Venn diagram	3	B3 All 8 regions completed correctly (B2 for 5, 6 or 7 regions completed correctly (B1 for 3 or 4 regions completed correctly))
(b)		25	1	B1 ft from a diagram where values other than 0 are present in the required regions
(c)		$\frac{23}{48}$	2	B2 oe eg $0.47(91)$ rounded or truncated to 2sf (B1 ft from a diagram where values other than 0 are present in the required regions for $\frac{23}{a}$ where $a > 23$ or $\frac{"9+14"}{a}$ or $\frac{"9+14"}{80} \div \frac{a}{80}$ (ft their 23) where $a > "9+14"$ or $\frac{b}{48}$ or $\frac{b}{80} \div \frac{48}{80}$ oe eg $\frac{b}{80} \div \frac{3}{5}$ where $b < 48$ or 23:48) B1 only for $\frac{9+14}{48}$
	cas for each part			Total 6 marks

Question	Working	Answer	Mark	Notes
7 (a)			2	M1 for at least 2 correct values in the correct places
		$\begin{pmatrix} 10 & -4 \\ -4 & 10 \end{pmatrix}$		A1 cao Do not isw
(b)			3	M2 for a matrix of the correct order and at least 4 correct values in the correct places (M1 for a matrix of the correct order and at least 2 correct values in the correct places)
		$ \begin{pmatrix} -2 & -6 & 22 \\ 2 & 4 & -18 \end{pmatrix} $		A1 cao Do not isw
(c)	$10 \times 5 - (-6 \times -8)[=2]$		4	M1 a correct method to find the determinant of A can be implied by multiplying matrix A by ½
	$\frac{1}{2} \begin{pmatrix} 5 & 6 \\ 8 & 10 \end{pmatrix}$			M2 for 4 values in the correct places in their A ⁻¹ (M1 for at least 2 correct values in the correct places in their A ⁻¹)
		$\begin{pmatrix} -0.5 & -3 \\ -4 & -3 \end{pmatrix}$		A1 cao
	cas for each part			Total 9 marks

Question	Working	Answer	Mark	Notes
8 (a)			3	M1 for a list of 5 numbers where the mode is 15 or the
				median is 16 or the range is 7
				M1 for a list of 5 numbers with two of:
				the mode is 15
				the median is 16
				the range is 7
		15, 15, 16,		A1 where <i>x</i> is 17, 18, 19, 20 or 21
		x, 22		(numbers can be in any order)
(b)	$8 \times 104 = 832 \text{ or } 5 \times 89 = 445$		3	M1 for the total weight of the 8 letters or the total
	8 × 104 [= 832] 01 3 × 89 [= 443]			weight of the 5 letters
	$8 \times 104 - 5 \times 89$ oe eg "832" – "445" [= 387]			M1 for the total weight of the 3 letters
	-	129		A1 cao
(c)	cm square (5ss by 5ss)		5	M1 for showing frequency is related to area by a correct
	$1 \times 3 + 3 \times 4$ cm squares = 75 or 15 cm squares = 75 or			calculation or a correct value for area and frequency or a
	1 cm square = 5 parcels oe			correct value on FD axis (1 cm vertically is FD 5) this
	small squares (ss)			may come from $1 \times 15x + 3 \times 20x = 75$ oe eg
	$75 \text{ lines of } 5 \text{ ss} = 75 \text{ or } 5 \times 15 + 15 \times 20 \text{ ss} = 75 \text{ or}$			$1 \times 3x + 3 \times 4x = 75$
	375 ss = 75 or 5 ss = 1 parcel oe			Implied by a frequency of 20 or 15 or 60 or 30 or 20 seen
				Any fd / frequency may be seen in the correct place on
				the histogram
	<u>using FD</u> eg $2 \times 10 + 75 + 2 \times 15 + 4 \times 5$ [= 145]			M1 implies the previous method mark
	$2 \times 20 + 2 \times 15 + 4 \times 5 = 90$			for a correct method to find the total number of parcels or
	<u>cm square (5ss by 5ss)</u> eg 14 × "5" + 75 [= 145]			a correct method to find the number of parcels greater
	or 29 × "5" [= 145] oe or 18 × "5" [= 90]			than 4 kg
	small squares (ss)			Also allow correct method to find the number of
	100 + 75 + 300 + 150 + 100			parcels less than 4 kg
				$eg 2 \times 10 + 1 \times 15 + 1 \times 20 = 55$ oe
	200+150+100			
	$\frac{200+150+100}{5} [=90]$			
			1	M1 implies both previous method marks for a correct first
				probability
				Only ft numbers from correct working
	$\frac{90}{145}$ " or $\frac{18}{29}$ " or "0.62(06)" oe			Also allow the correct probability for a parcel
	145 29			being less than 4 kg
				eg $\frac{55}{145}$ or $\frac{11}{29}$ or 0.37(93)
				14J Z7

		M1 A correct product
$\frac{90}{145} \times \frac{90-1}{145-1}$ oe		Allow $\left(\frac{90}{145}\right)^2 = \frac{324}{841} \approx 0.385$
		Condone $2 \times \frac{90}{145} \times \frac{90-1}{145-1}$ and $2 \times \left(\frac{90}{145}\right)^2$
	89	A1 oe eg 0.38(36) [decimal or % 2sf or better]
	$\frac{89}{232}$	Allow 0.38 – 0.3853
cas for each part		Total 11 marks

(c) $\frac{160}{360} \times \pi \times r^2 = \frac{196}{25} \pi \text{ oe eg} \frac{160}{360} \times r^2 = \frac{196}{15} = 1.866]$ $(c) \frac{160}{360} \times \pi \times r^2 = \frac{196}{25} \pi \text{ oe eg} \frac{1}{360} \times r^2 = \frac{196}{25}$ $(c) \frac{160}{360} \times \pi \times r^2 = \frac{196}{25} \pi \text{ oe eg} \frac{1}{360} \times r^2 = \frac{196}{25}$ $(c) \frac{160}{360} \times \pi \times r^2 = \frac{196}{25} \pi \text{ oe eg} \frac{1}{360} \times r^2 = \frac{196}{25}$ $(c) \frac{160}{360} \times \pi \times r^2 = \frac{196}{25} \pi \text{ oe eg} \frac{1}{360} \times r^2 = \frac{196}{25}$ $(c) \frac{160}{360} \times \pi \times r^2 = \frac{196}{25} \pi \text{ oe eg} \frac{1}{360} \times r^2 = \frac{196}{25} \pi$ $(c) \frac{1}{360} \times \pi \times r^2 = \frac{196}{25} \pi \text{ oe eg} \frac{1}{360} \times r^2 = \frac{196}{25} \pi$ $(c) \frac{1}{360} \times \pi \times r^2 = \frac{196}{25} \pi \text{ oe eg} \frac{1}{360} \times r^2 = \frac{196}{25} \pi$ $(c) \frac{1}{360} \times \pi \times r^2 = \frac{196}{25} \pi \text{ oe eg} \frac{1}{360} \times r^2 = \frac{196}{25} \pi$ $(c) \frac{1}{360} \times \pi \times r^2 = \frac{196}{25} \pi \text{ oe eg} \frac{1}{25} = 1.866]$ $(c) \frac{1}{360} \times \pi \times r^2 = \frac{196}{25} \pi \text{ oe eg} \frac{1}{25} = 1.866]$ $(c) \frac{1}{360} \times \pi \times r^2 = \frac{196}{25} \pi \text{ oe eg} \frac{1}{25} = 1.866]$ $(c) \frac{1}{360} \times \pi \times r^2 = \frac{196}{25} \pi \text{ oe eg} \frac{1}{25} = 1.866]$ $(c) \frac{1}{360} \times \pi \times r^2 = \frac{196}{25} \pi \text{ oe eg} \frac{1}{25} = 1.866]$ $(c) \frac{1}{360} \times \pi \times r^2 = \frac{196}{25} \pi \text{ oe eg} \frac{1}{25} = 1.866]$ $(c) \frac{1}{360} \times \pi \times r^2 = \frac{196}{25} \pi \text{ oe eg} \frac{1}{25} = 1.866]$ $(c) \frac{1}{360} \times \pi \times r^2 = \frac{196}{25} \pi \text{ oe eg} \frac{1}{25} = 1.866]$ $(c) \frac{1}{360} \times \pi \times r^2 = \frac{196}{25} \pi \text{ oe eg} \frac{1}{25} = 1.866]$ $(c) \frac{1}{360} \times \pi \times r^2 = \frac{196}{25} \pi \text{ oe eg} \frac{1}{25} \pi \text{ oe eg} \frac{1}{25} = 1.866]$ $(c) \frac{1}{360} \times \pi \times r^2 = \frac{196}{25} \pi \text{ oe eg} \frac{1}{25} \pi \text{ oe eg} \frac{1}{25} = 1.866]$ $(c) \frac{1}{360} \times \pi \times r^2 = \frac{196}{25} \pi \text{ oe eg} \frac{1}{25} \pi \text{ oe eg} \frac{1}{25} = 1.866]$ $(c) \frac{1}{360} \times \pi \times r^2 = \frac{196}{25} \pi \text{ oe eg} \frac{1}{25} \pi \text{ oe eg} \frac{1}{25} = 1.866]$ $(c) \frac{1}{360} \times \pi \times r^2 = \frac{1}{25} \pi \text{ oe eg} \frac{1}{25} \pi $	Question	Working	Answer	Mark	Notes
	9 (a) (i)		80	1	B1 cao
reason circumference / angle at circumference	(a) (ii)			1	B1 dep on B1 in (i)
(c) $\frac{160}{360} \times \pi \times r^2 = \frac{196}{25} \pi \text{ oe eg} \frac{160}{360} \times r^2 = \frac{196}{15} = 1.866]$ $(c) \frac{160}{360} \times \pi \times r^2 = \frac{196}{25} \pi \text{ oe eg} \frac{160}{360} \times r^2 = \frac{196}{25}$ $(c) \frac{160}{360} \times \pi \times r^2 = \frac{196}{25} \pi \text{ oe eg} \frac{160}{360} \times r^2 = \frac{196}{25}$ $(c) \frac{160}{360} \times \pi \times r^2 = \frac{196}{25} \pi \text{ oe eg} \frac{160}{360} \times r^2 = \frac{196}{25}$ $(c) \frac{160}{360} \times \pi \times r^2 = \frac{196}{25} \pi \text{ oe eg} \frac{160}{360} \times r^2 = \frac{196}{25}$ $(c) \frac{160}{360} \times \pi \times r^2 = \frac{196}{25} \pi \text{ oe eg} \frac{160}{360} \times r^2 = \frac{196}{25} \pi$ $(c) \frac{160}{360} \times \pi \times r^2 = \frac{196}{25} \pi \text{ oe eg} \frac{160}{360} \times r^2 = \frac{196}{25} \pi$ $(c) \frac{160}{360} \times \pi \times r^2 = \frac{196}{25} \pi \text{ oe eg} \frac{196}{360} \times r^2 = \frac{196}{25} \pi$ $(c) \frac{160}{360} \times \pi \times r^2 = \frac{196}{360} \pi \text{ oe eg} [r =] \sqrt{\frac{196}{25}} \times \frac{1}{4} = \frac{21}{5} = 4.2]$ $(c) \frac{160}{360} \times \pi \times r^2 = \frac{196}{360} \pi \text{ oe eg} [r =] \sqrt{\frac{196}{25}} \times \frac{1}{4} = \frac{21}{5} = 4.2]$ $(c) \frac{160}{360} \times \pi \times r^2 = \frac{196}{360} \pi \text{ oe eg} [r =] \sqrt{\frac{196}{25}} \times \frac{1}{4} = \frac{21}{5} = 4.2]$ $(c) \frac{160}{360} \times \pi \times r^2 = \frac{196}{360} \pi \text{ oe eg} [r =] \sqrt{\frac{196}{25}} \times \frac{1}{4} = \frac{21}{5} = 4.2]$ $(c) \frac{160}{360} \times \pi \times r^2 = \frac{196}{360} \pi \text{ oe eg} [r =] \sqrt{\frac{196}{25}} \times \frac{1}{4} = \frac{21}{5} = 4.2]$ $(c) \frac{160}{360} \times \pi \times r^2 = \frac{196}{360} \pi \text{ oe eg} [r =] \sqrt{\frac{196}{25}} \times \frac{1}{4} = \frac{21}{5} = 4.2]$ $(c) \frac{160}{360} \times \pi \times r^2 = \frac{196}{360} \pi \text{ oe eg} [r =] \sqrt{\frac{196}{25}} \times \frac{1}{4} = \frac{21}{5} = 4.2]$ $(c) \frac{160}{360} \times \pi \times r^2 = \frac{196}{360} \pi \text{ oe eg} [r =] \sqrt{\frac{196}{25}} \times \frac{1}{4} = \frac{21}{5} = 4.2]$ $(c) \frac{1}{3} \times \pi \times 1.2 \times 1.$			correct		for Angle at the centre is $2 \times$ (double) angle at
(b) $\frac{\text{eg "80"} - 37 \text{ or } 360 - \text{*80"} - 37 - (360 - 160) \text{ or}}{180 - \text{*80"} - 37 - (180 - 160) \text{ oe}}$ (c) Throughout part (c) allow 3.1, 3.14, etc or $\frac{22}{7}$ for π and allow any letter or symbol for r (c) $\frac{160}{360} \times \pi \times r^2 = \frac{196}{25} \pi$ oe $\frac{160}{360} \times r^2 = \frac{196}{25}$ [$r = \sqrt{\frac{196\pi}{25} + \frac{160\pi}{360}}$ oe $\frac{160}{25} \times \frac{9}{4} = \frac{21}{5} = 4.2$] [radius of cone = $1 \text{ eg} \frac{196}{25} \times \text{"} 4.2 \text{"} = \frac{28}{15} = 1.866$] oe [and in the sector (slant height of cone)] [cone height=) $\sqrt{^n} 4.2 \times ^{n^2} - ^{n^2} 1.866^{n^2}} = \frac{7\sqrt{65}}{15} = 3.762$] [cone height=) $\sqrt{^n} 4.2 \times ^{n^2} - ^{n^2} 1.866^{n^2}} = \frac{7\sqrt{65}}{15} = 3.762$] [and in the sector (slant height of the sector)] [by the sector (slant height of the sector)] [cone height=) $\sqrt{^n} 4.2 \times ^{n^2} - ^{n^2} 1.866^{n^2}} = \frac{7\sqrt{65}}{15} = 3.762$] [cone height=) $\sqrt{^n} 4.2 \times ^{n^2} - ^{n^2} 1.866^{n^2}} = \frac{7\sqrt{65}}{15} = 3.762$] [13.7] (cm³) [13.7] (cm³) [13.7] (cm³)			reason		circumference / angle at circumference is ½ angle at centre
(c) Throughout part (c) allow 3.1, 3.14, etc or $\frac{22}{7}$ for π and allow any letter or symbol for r (c) $\frac{160}{360} \times \pi \times r^2 = \frac{196}{25} \pi$ oe eg $\frac{160}{360} \times r^2 = \frac{196}{25}$ [$r = \sqrt{\frac{196\pi}{25} + \frac{160\pi}{360}}$ oe eg $[r = \sqrt{\frac{196}{25}} \times \frac{9}{4}] = \frac{21}{5} = 4.2$] [radius of cone = $\log \frac{196}{25} \div 4.2$ " [= $\frac{28}{15} = 1.866$] oe [$\frac{160}{360} \times 2\pi \times 4.2$ "[= 11.7] = $\frac{28}{15} = 1.866$] $\frac{160}{25} \times \frac{2\pi}{4} \times \frac{4.2}{15} = \frac{21}{15} = 1.866$] (cone height=) $\sqrt{^{14}.2^{12}} - ^{11}.866$					allow the symbol for the word 'angle'
(c) Throughout part (c) allow 3.1, 3.14, etc or $\frac{22}{7}$ for π and allow any letter or symbol for r (c) $\frac{160}{360} \times \pi \times r^2 = \frac{196}{25} \pi \text{ oe eg} \frac{160}{360} \times r^2 = \frac{196}{25}$ $[r =]\sqrt{\frac{196\pi}{25} \div \frac{160\pi}{360}} \text{ oe eg} [r =]\sqrt{\frac{196}{25} \times \frac{9}{4}} = \frac{21}{5} = 4.2]$ $[radius of cone =] \text{ eg} \frac{196}{25} \times \text{"4.2"} = \frac{28}{15} = 1.866]$ $eg \frac{\frac{160}{360} \times 2\pi \times \text{"4.2"} = \frac{111.7}{2\pi} = \frac{28}{15} = 1.866]$ $(cone height=)\sqrt{\text{"4.2"}^2 - \text{"1.866"}^2} = \frac{2}{15} = 1.866]$ $\frac{1}{3} \times \pi \times \text{"1.866"}^2 \times \text{"3.762"} = \frac{4.36(99)\pi}{15}$ $\frac{1}{3} \times \pi \times \text{"1.866"}^2 \times \text{"3.762"} = \frac{4.36(99)\pi}{15}$ $\frac{13.7}{(cm^3)}$ $\frac{13.7}{(cm^3)}$ $\frac{13.7}{(cm^3)}$ $\frac{13.7}{300} \times \frac{160}{360} \times \pi \times r^2 = \frac{196}{25} \pi \text{ or } \frac{160}{360} \times \pi \times r^2 = \frac{196}{25} \pi$ $\frac{160}{360} \times \pi \times (r)^2 = \frac{196}{25} \pi \text{ or } \frac{160}{360} \times \pi \times r^2 = \frac{196}{25} \pi$ $\frac{160}{360} \times \pi \times (r)^2 = \frac{196}{25} \pi \text{ or } \frac{160}{360} \times \pi \times r^2 = \frac{196}{25} \pi$ $\frac{160}{360} \times \pi \times (r)^2 = \frac{196}{25} \pi \text{ or } \frac{160}{360} \times \pi \times r^2 = \frac{196}{25} \pi$ $\frac{160}{360} \times \pi \times (r)^2 = \frac{196}{25} \pi \text{ or } \frac{160}{360} \times \pi \times r^2 = \frac{196}{25} \pi$ $\frac{160}{360} \times \pi \times (r)^2 = \frac{196}{25} \pi \text{ or } \frac{160}{360} \times \pi \times r^2 = \frac{196}{25} \pi$ $\frac{160}{360} \times \pi \times (r)^2 = \frac{196}{25} \pi \text{ or } \frac{160}{360} \times \pi \times r^2 = \frac{196}{25} \pi$ $\frac{1}{3} \times \pi \times (1.866) $	(b)	eg "80" – 37 or 360 – "80" – 37 – (360 – 160) or		2	
(c) Throughout part (c) allow 3.1, 3.14, etc or $\frac{22}{7}$ for π and allow any letter or symbol for r (c) $\frac{160}{360} \times \pi \times r^2 = \frac{196}{25} \pi \text{ oe eg} \frac{160}{360} \times r^2 = \frac{196}{25}$ $[r =]\sqrt{\frac{196\pi}{25} \div \frac{160\pi}{360}} \text{ oe eg} [r =]\sqrt{\frac{196}{25} \times \frac{9}{4}} = \frac{21}{5} = 4.2]$ $[radius of cone =] \text{ eg} \frac{196}{25} \div "4.2" \left[= \frac{28}{15} = 1.866 \right] \text{ oe}$ $\frac{160}{360} \times 2\pi \times "4.2" [=11.7] \left[= \frac{28}{15} = 1.866 \right]$ $(\text{cone height} =) \sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right]$ $\frac{1}{3} \times \pi \times "1.866"^2 \times "3.762" \left[= 4.36(99)\pi \right]$ $\frac{1}{3} \times \pi \times "1.866"^2 \times "3.762" \left[= 4.36(99)\pi \right]$ $\frac{13.7}{(\text{cm}^3)}$ $\frac{13.7}{(\text{cm}^3)}$ $\frac{13.7}{25} \times \frac{120}{15} \times \frac{196}{25} \times \frac{160}{360} \times \pi \times \times \frac{196}{25} \times \frac{196}{360} \times \pi \times \times \frac{196}{360} \times \pi \times \times \frac{196}{25} \times \frac{196}{360} \times \pi \times \times \frac{196}{360} \times \pi \times \times \frac{196}{360} \times \frac{196}{360} \times \pi \times \times \frac{196}{360} \times \frac{196}{360} \times \pi \times \times \frac{196}{25} \times \frac{196}{360} \times \pi \times \times \frac{196}{25} \times \frac{196}{360} \times \frac$		180 - 80 - 37 - (180 - 160) oe			A correct method to find angle TPO
Throughout part (c) allow 3.1, 3.14, etc or $\frac{1}{7}$ for π and allow any letter or symbol for r $\frac{160}{360} \times \pi \times r^2 = \frac{196}{25} \pi \text{ oe eg} \frac{160}{360} \times r^2 = \frac{196}{25}$ $[r =]\sqrt{\frac{196\pi}{25} + \frac{160\pi}{360}} \text{ oe eg} [r =]\sqrt{\frac{196}{25}} \times \frac{9}{4} \left[= \frac{21}{5} = 4.2 \right]$ [radius of cone = $ \text{ eg} \frac{196}{25} \div "4.2" \left[= \frac{28}{15} = 1.866 \right] \text{ oe}$ $\frac{160}{360} \times 2\pi \times "4.2" \left[= 11.7 \right]}{2\pi} \left[= \frac{28}{15} = 1.866 \right]$ (cone height=) $\sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right]$ $\frac{1}{3} \times \pi \times "1.866"^2 \times "3.762" \left[= 4.36(99)\pi \right]$ (cone height=) $\sqrt{"4.2"^2 - "1.866"^2} \left[= 4.36(99)\pi \right]$ $\frac{1}{3} \times \pi \times "1.866"^2 \times "3.762" \left[= 4.36(99)\pi \right]$ (a) (b) 10) 11.57 (cm²) 13.77 (cm²) 14. M1 for an equation in the form $\frac{160}{360} \times \pi \times (r)^2 = \frac{196}{25} \pi$ or $\frac{160}{360} \times \pi \timesr^2 = \frac{196}{25} \pi$ or $\frac{160}{25} \times \pi \timesr^2 = \frac{196}{25} \pi$ or $\frac{160}{360} \times \pi \timesr^2 = \frac{196}{25} \pi$ or $\frac{160}{25} \times \pi \timesr^2 = \frac{196}{25} \pi$ or $\frac{160}{25} \times \pi \timesr^2 = \frac{196}{25} \pi$ or $\frac{160}{360} \times \pi \timesr^2 = \frac{196}{25} \pi$ or $\frac{160}{360} \times \pi \timesr^2 = \frac{196}{25} \pi$ or $\frac{160}{360} \times \pi \timesr^2 = \frac{196}{25} \pi$ or $\frac{160}{25} \times \pi \timesr^2 = \frac{196}{25} \pi$ or $\frac{160}{360} \times \pi \timesr^2 = \frac{196}{25} \pi$ or $\frac{160}{360} \times \pi \timesr^2 = \frac{196}{25} \pi$			43		A1 cao
$\frac{160}{360} \times \pi \times r^2 = \frac{196}{25} \pi \text{ oe eg} \frac{100}{360} \times r^2 = \frac{196}{25}$ $[r =]\sqrt{\frac{196\pi}{25} \div \frac{160\pi}{360}} \text{ oe eg} [r =]\sqrt{\frac{196}{25} \times \frac{9}{4}} = \frac{21}{5} = 4.2]$ $[radius of cone =] \text{ eg} \frac{196}{25} \div "4.2" = \frac{28}{15} = 1.866] \text{ oe}$ $\frac{160}{360} \times 2\pi \times "4.2" = 11.7] = \frac{28}{15} = 1.866$ $(cone \text{ height} =) \sqrt{"4.2"^2 - "1.866"^2} = \frac{27\sqrt{65}}{15} = 3.762$ $\frac{1}{3} \times \pi \times "1.866"^2 \times "3.762" = 4.36(99)\pi$ $\frac{1}{3} \times \pi \times "1.866"^2 \times "3.762" = 4.36(99)\pi$ $\frac{13.7}{(cm^3)}$ $\frac{13.7}{(cm^3)}$ $\frac{13.7}{(cm^3)}$ $\frac{13.7}{(cm^3)}$ $\frac{13.4}{100} \times \pi \times (r)^2 = \frac{196}{25} \pi \text{ or } \frac{160}{360} \times \pi \times r^2 = \frac{196}{25} \pi$ $\frac{160}{360} \times \pi \times r^2 = \frac{196}{25} \pi$ $\frac{196}{360} \times \pi \times r^2 = \frac{196}{25} \pi$ $\frac{196}{25} \pi \times 100$ $\frac{196}{25} \pi \times $	(c)	Throughout part (c) allow 3.1, 3.	.14, etc or	$\frac{22}{7}$ for π	and allow any letter or symbol for r
$\frac{160}{360} \times \pi \times r^2 = \frac{196}{25} \pi \text{ oe eg} \frac{100}{360} \times r^2 = \frac{196}{25}$ $[r =]\sqrt{\frac{196\pi}{25} \div \frac{160\pi}{360}} \text{ oe eg} [r =]\sqrt{\frac{196}{25} \times \frac{9}{4}} = \frac{21}{5} = 4.2]$ $[radius of cone =] \text{ eg} \frac{196}{25} \div "4.2" = \frac{28}{15} = 1.866] \text{ oe}$ $\frac{160}{360} \times 2\pi \times "4.2" = 11.7] = \frac{28}{15} = 1.866$ $(cone \text{ height} =) \sqrt{"4.2"^2 - "1.866"^2} = \frac{27\sqrt{65}}{15} = 3.762$ $\frac{1}{3} \times \pi \times "1.866"^2 \times "3.762" = 4.36(99)\pi$ $\frac{1}{3} \times \pi \times "1.866"^2 \times "3.762" = 4.36(99)\pi$ $\frac{13.7}{(cm^3)}$ $\frac{13.7}{(cm^3)}$ $\frac{13.7}{(cm^3)}$ $\frac{13.7}{(cm^3)}$ $\frac{13.4}{100} \times \pi \times (r)^2 = \frac{196}{25} \pi \text{ or } \frac{160}{360} \times \pi \times r^2 = \frac{196}{25} \pi$ $\frac{160}{360} \times \pi \times r^2 = \frac{196}{25} \pi$ $\frac{196}{360} \times \pi \times r^2 = \frac{196}{25} \pi$ $\frac{196}{25} \pi \times 100$ $\frac{196}{25} \pi \times $	(c)	160 106 160 106		6	M1 for an equation in the form
$[r=]\sqrt{\frac{196\pi}{25}} \div \frac{160\pi}{360} \text{ oe eg } [r=]\sqrt{\frac{196}{25}} \times \frac{9}{4} \left[= \frac{21}{5} = 4.2 \right]$ $[radius of cone =] \text{ eg } \frac{196}{25} \div "4.2" \left[= \frac{28}{15} = 1.866 \right] \text{ oe}$ $[radius of cone =] \text{ eg } \frac{196}{25} \div "4.2" \left[= 11.7 \right] \left[= \frac{28}{15} = 1.866 \right]$ $[cone \text{ height} =)\sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right]$ $[cone \text{ height} =)\sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right]$ $[cone \text{ height} =)\sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right]$ $[cone \text{ height} =)\sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right]$ $[cone \text{ height} =)\sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right]$ $[cone \text{ height} =)\sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right]$ $[cone \text{ height} =)\sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right]$ $[cone \text{ height} =)\sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right]$ $[cone \text{ height} =)\sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right]$ $[cone \text{ height} =)\sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right]$ $[cone \text{ height} =)\sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right]$ $[cone \text{ height} =)\sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right]$ $[cone \text{ height} =)\sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right]$ $[cone \text{ height} =)\sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right]$ $[cone \text{ height} =)\sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right]$ $[cone \text{ height} =)\sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right]$ $[cone \text{ height} =)\sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right]$ $[cone \text{ height} =)\sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right]$ $[cone \text{ height} =)\sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right]$ $[cone \text{ height} =)\sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right]$ $[cone \text{ height} =)\sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right]$ $[cone \text{ height} =)\sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} =$		$\frac{160}{360} \times \pi \times r^2 = \frac{196}{25} \pi \text{ oe eg } \frac{160}{360} \times r^2 = \frac{196}{25}$			$\frac{160}{360} \times \pi \times (r)^2 = \frac{196}{25} \pi \text{ or } \frac{160}{360} \times \pi \timesr^2 = \frac{196}{25} \pi$
[radius of cone =] eg $\frac{196}{25}$ ÷ "4.2" $\left[= \frac{28}{15} = 1.866 \right]$ oe $\frac{160}{360} \times 2\pi \times$ "4.2" $\left[= 11.7 \right] \left[= \frac{28}{15} = 1.866 \right]$		$196\pi 160\pi$ $196 9 5 21$			M1 implies previous M
[radius of cone =] eg $\frac{196}{25}$ ÷ "4.2" $\left[= \frac{28}{15} = 1.866 \right]$ oe $\frac{160}{360} \times 2\pi \times$ "4.2" $\left[= 11.7 \right] \left[= \frac{28}{15} = 1.866 \right]$		$\left[r = \right] \sqrt{\frac{190h}{25}} \div \frac{100h}{260}$ oe eg $\left[r = \right] \sqrt{\frac{190}{25}} \times \frac{9}{4} = \frac{21}{5} = 4.2$			a correct calculation for the radius of the sector (slant
radius of the sector. If r is incorrect it must be clearly labelled and working for this method mark must be she condone radius of cone being labelled as l M1 dep on first and third method marks, for a correct calculation for the height of the cone Follow through candidate's values for r or r and l . The must be clearly labelled and working shown if they are incorrect Condone $\sqrt{"1.866"^2 - "4.2"^2}$ M1 dependent on previous four method marks for a correct calculation for the volume where r and h is from correct methods NB: $\frac{1}{3} \times \pi \times "1.866"^2 \times "3.762"$ does not get this mark 13.7 (cm³) SCB4 for 68.5 to 69.7		- 1 25 300 - 1 25 4 5			height of cone)
$\frac{1}{360} \times 2\pi \times "4.2" [=11.7]}{2\pi} = \frac{28}{15} = 1.866]$ labelled and working for this method mark must be she Condone radius of cone being labelled as l M1 dep on first and third method marks, for a correct calculation for the height of the cone Follow through candidate's values for r or r and l. The must be clearly labelled and working shown if they are incorrect Condone $\sqrt{"1.866"^2 - "4.2"^2}$ M1 dependent on previous four method marks for a correct calculation for the volume where r and h is from correct methods NB: $\frac{1}{3} \times \pi \times "1.866"^2 \times "3.762"$ does not get this mark 13.7 (cm³) SCB4 for 68.5 to 69.7		[radius of cone =] eg $\frac{196}{25}$ ÷ "4.2" $\left[= \frac{28}{15} = 1.866 \right]$ oe			M1 for $\frac{196}{25}$ ÷ "r" where "r" is the candidate's value for the
$ (\text{cone height=}) \sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right] $ $ (\text{cone height=}) \sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right] $ $ (\text{cone height=}) \sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right] $ $ (\text{cone height=}) \sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right] $ $ (\text{cone height=}) \sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right] $ $ (\text{cone height=}) \sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right] $ $ (\text{cone height=}) \sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right] $ $ (\text{cone height=}) \sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right] $ $ (\text{cone height=}) \sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right] $ $ (\text{cone height=}) \sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right] $ $ (\text{cone height=}) \sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right] $ $ (\text{cone height=}) \sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right] $ $ (\text{cone height=}) \sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right] $ $ (\text{cone height=}) \sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right] $ $ (\text{cone height=}) \sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right] $ $ (\text{cone height=}) \sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right] $ $ (\text{cond height=}) \sqrt{"4.2"^2 - "4.2"^2} $ $ (\text{cond height=}$		160			· ·
$ (\text{cone height=}) \sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right] $ $ (\text{cone height=}) \sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right] $ $ (\text{cone height=}) \sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right] $ $ (\text{cone height=}) \sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right] $ $ (\text{cone height=}) \sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right] $ $ (\text{cone height=}) \sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right] $ $ (\text{cone height=}) \sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right] $ $ (\text{cone height=}) \sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right] $ $ (\text{cone height=}) \sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right] $ $ (\text{cone height=}) \sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right] $ $ (\text{cone height=}) \sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right] $ $ (\text{cone height=}) \sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right] $ $ (\text{cone height=}) \sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right] $ $ (\text{cone height=}) \sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right] $ $ (\text{cone height=}) \sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right] $ $ (\text{cone height=}) \sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right] $ $ (\text{cone height=}) \sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right] $ $ (\text{cone height=}) \sqrt{"4.2"^2 - "1.866"^2} \left[= \frac{7\sqrt{65}}{15} = 3.762 \right] $ $ (\text{cone height=}) \sqrt{"4.2"^2 - "4.2"^2} $ $ (\text{cond height=}) "4.2"^$		$\left[eg \frac{360}{360} \times 2\pi \times 4.2 \right] = 11.7 $ $\left[= \frac{28}{1.5} = 1.866 \right]$			
		2π [15]			ū
Follow through candidate's values for r or r and l. The must be clearly labelled and working shown if they are incorrect $ \frac{1}{3} \times \pi \times "1.866"^2 \times "3.762" [= 4.36(99)\pi] $ Follow through candidate's values for r or r and l. The must be clearly labelled and working shown if they are incorrect Condone $\sqrt{"1.866"^2 - "4.2"^2}$ M1 dependent on previous four method marks for a correct calculation for the volume where r and h a from correct methods NB: $\frac{1}{3} \times \pi \times "4.2"^2 \times "3.762"$ does not get this mark A1 13.4 to 13.9 SCB4 for 68.5 to 69.7					
$\frac{1}{3} \times \pi \times "1.866"^2 \times "3.762" [= 4.36(99)\pi]$ $\frac{1}{3} \times \pi \times "1.866"^2 \times "3.762" [= 4.36(99)\pi]$ $\frac{1}{3} \times \pi \times "4.2"^2 \times "3.762" does not get this mark}{13.7}$ $\frac{1}{3} \times \pi \times "4.2"^2 \times "3.762" does not get this mark}{13.4 \text{ to } 13.9}$ $\frac{13.7}{3} \times \pi \times "4.2"^2 \times "3.762" does not get this mark}{13.4 \text{ to } 13.9}$ $\frac{13.7}{3} \times \pi \times "4.2"^2 \times "3.762" does not get this mark}{13.4 \text{ to } 13.9}$ $\frac{13.7}{3} \times \pi \times "4.2"^2 \times "3.762" does not get this mark}{13.4 \text{ to } 13.9}$		r — 1			
$\frac{1}{3} \times \pi \times "1.866"^2 \times "3.762" [= 4.36(99)\pi]$ $\frac{1}{3} \times \pi \times "1.866"^2 \times "3.762" [= 4.36(99)\pi]$ $\frac{1}{3} \times \pi \times "4.2"^2 \times "3.762" does not get this mark}{13.7}$ $\frac{1}{3} \times \pi \times "4.2"^2 \times "3.762" does not get this mark}{13.4 \text{ to } 13.9}$ $\frac{13.7}{3} \times \pi \times "4.2"^2 \times "3.762" does not get this mark}{13.4 \text{ to } 13.9}$ $\frac{13.7}{3} \times \pi \times "4.2"^2 \times "3.762" does not get this mark}{13.4 \text{ to } 13.9}$ $\frac{13.7}{3} \times \pi \times "4.2"^2 \times "3.762" does not get this mark}{13.4 \text{ to } 13.9}$		$\left \text{(cone height=)} \sqrt{\ 42\ ^2 - \ 1866\ ^2} \right = \frac{7\sqrt{65}}{12} = 3.762$			
$\frac{1}{3} \times \pi \times "1.866"^2 \times "3.762" [= 4.36(99)\pi]$ $\frac{1}{3} \times \pi \times "1.866"^2 \times "3.762" [= 4.36(99)\pi]$ $\frac{1}{3} \times \pi \times "1.866"^2 \times "3.762" [= 4.36(99)\pi]$ $\frac{1}{3} \times \pi \times "4.2"^2 \times "3.762" does not get this mark$ $\frac{1}{3} \times \pi \times "4.2"^2 \times "3.762" does not get this mark$ $\frac{13.7}{(cm^3)}$ $\frac{13.7}{SCB4 for 68.5 to 69.7}$		15			
$\frac{1}{3} \times \pi \times "1.866"^2 \times "3.762" [= 4.36(99)\pi]$ $\frac{1}{3} \times \pi \times "1.866"^2 \times "3.762" [= 4.36(99)\pi]$ $\frac{1}{3} \times \pi \times "4.2"^2 \times "3.762" does not get this mark}{13.7}$ $\frac{13.7}{\text{(cm}^3)}$ $\frac{13.7}{\text{SCB4 for 68.5 to 69.7}}$					
$\frac{1}{3} \times \pi \times "1.866"^2 \times "3.762" [= 4.36(99)\pi]$ for a correct calculation for the volume where r and h is from correct methods $NB: \frac{1}{3} \times \pi \times "4.2"^2 \times "3.762" \text{ does not get this mark}$ $13.7 \text{ (cm}^3)$ $SCB4 \text{ for } 68.5 \text{ to } 69.7$					Condone $\sqrt{1.866^2 - 4.2^2}$
$\frac{1}{3} \times \pi \times "1.866"^2 \times "3.762" \left[= 4.36(99)\pi \right]}{NB: \frac{1}{3} \times \pi \times "4.2"^2 \times "3.762" \text{ does not get this mark}}{A1 13.4 \text{ to } 13.9}$ (cm^3) $SCB4 \text{ for } 68.5 \text{ to } 69.7$					M1 dependent on previous four method marks
NB: $\frac{1}{3} \times \pi \times "4.2"^2 \times "3.762"$ does not get this mark 13.7 (cm³) SCB4 for 68.5 to 69.7		1			for a correct calculation for the volume where r and h are
NB: $\frac{1}{3} \times \pi \times "4.2"^2 \times "3.762"$ does not get this mark 13.7 (cm³) SCB4 for 68.5 to 69.7		$\frac{1}{2} \times \pi \times "1.866"^2 \times "3.762" [= 4.36(99)\pi]$			from correct methods
(cm³) SCB4 for 68.5 to 69.7		3			NB: $\frac{1}{3} \times \pi \times "4.2"^2 \times "3.762"$ does not get this mark
			13.7		A1 13.4 to 13.9
Total 10 n			(cm ³)		SCB4 for 68.5 to 69.7
1000 10 11		cas			Total 10 marks

Question	Working	Answer	Mark	Notes
10 (a)		-2	1	B1 allow $x = -2$ or $x \neq -2$
				DO NOT allow $x < -2$ or $x > -2$ or $y = -2$ or $y \neq -2$
(b)		15	1	B1 cao
(c)	13		2	M1 Setting $g(x) = 5$
	$\frac{13}{x+2} = 5$ oe			Allow any letter for <i>x</i>
		0.6		A1 oe eg $\frac{3}{5}$
(d)	$[fg(x) =] \left(\frac{13}{x+2}\right)^2 + 2\left(\frac{13}{x+2}\right) \text{ oe}$ or $[g(24) =] \frac{13}{24+2} [= 0.5] \text{ oe}$		2	M1 For evidence of a correct first step eg finding $fg(x)$ or sight of 0.5 (which may be embedded in their attempt at $fg(24)$)
	or $f(0.5)$ oe			
		1.25		A1 oe eg $\frac{5}{4}$
(e)	$\frac{13}{x^2 + 2x + 2} [= 4]$ or $\frac{13 - 2x}{x} \left[\Rightarrow \frac{13 - 2(4)}{4} = \frac{5}{4} \right]$ or $\frac{13}{x + 2} = 4 \Rightarrow x = \frac{5}{4}$ $4x^2 + 8x - 5 [= 0] \text{ oe}$		4	M1 for a correct (un simplified) expression for gf(x) or for finding the inverse of g or for correctly solving g(x) = 4 may use a different letter to x eg $\frac{13}{t+2} = 4 \Rightarrow t = \frac{5}{4}$ M1 a correct 3TQ
	eg $x^2 + 2x - \frac{5}{4}$ [= 0] or $x^2 + 2x = \frac{5}{4}$			M1 dependent on the first method mark For solving their 3 term quadratic using any correct method. Method may be implied by answers of 0.5 and -2.5 or by an answer of 0.5 Working must be shown if their quadratic is incorrect
		$\frac{1}{2}$		A1 dep on first method mark for just $\frac{1}{2}$ oe

(f)	$[y =]5(x^{2} - 2x) - 4$ or $[y =]5(x^{2} - 2x - \frac{4}{5})$ $[y =]5((x - 1)^{2} - 1) - 4 \text{ or}$ $[y =]5((x - 1)^{2} - 1 - \frac{4}{5})$ $\frac{y + 9}{5} = (x - 1)^{2}$		4	M1 for a correct start to write the quadratic in completed square form Allow x and y to be interchanged Condone division of all terms by 5 ie $x^2 - 2x - \frac{4}{5}$ oe M1 implies previous method mark Allow $y = (\sqrt{5}x - \sqrt{5})^2 - 5 - 4$ oe Allow x and y to be interchanged Condone $(x-1)^2 - 1 - \frac{4}{5}$ oe M1 Allow $y + 9 = (\sqrt{5}x - \sqrt{5})^2$ oe Allow x and y to be interchanged			
	Allow candidates to swap x and y when finding inverse	$[h^{-1}: x \mapsto]$ $1 + \sqrt{\frac{x+9}{5}}$		A1 oe eg $\frac{\sqrt{x+9} + \sqrt{5}}{\sqrt{5}}$ Must only have + and must be in x Do not ISW			
(f) alt	$5x^{2}-10x-(y+4)[=0] \text{ oe}$ $[x=]\frac{10\pm\sqrt{100-4\times5\times(-y-4)}}{10} \text{ oe}$ $[y=]\frac{10\pm\sqrt{180+20x}}{10} \text{ oe}$ or $[x=]\frac{10+\sqrt{180+20y}}{10} \text{ oe}$ Allow candidates to swap x and y when finding inverse	$[h^{-1}: x \mapsto]$ $1 + \sqrt{\frac{x+9}{5}}$	4	M1 for a correct first step of arranging all terms on the same side of an equation / expression M1 dep for applying the quadratic formula correctly Allow with positive sign only eg $[x =] \frac{10 + \sqrt{100 - 4 \times 5 \times (-y - 4)}}{10}$ M1 dep on first M1 for recognising that x/y has to be positive in a correct expression or for having a correct expression in terms of x Allow un-simplified eg $[y =] \frac{10 \pm \sqrt{100 - 4 \times 5 \times (-x - 4)}}{10}$ A1 oe eg $1 + \frac{\sqrt{180 + 20x}}{10}$ Allow un-simplified eg $\frac{10 + \sqrt{100 - 4 \times 5 \times (-x - 4)}}{10}$ or $\frac{10 + \sqrt{180 + 20x}}{10}$ Must only have $+$ and must be in x Do not ISW			
	cas for parts (a), (b), (c), (d), (f) wr for part (e) $Total 14 marks$						

Question	Working	Answer	Mark	Notes
11	$2(5+y)^{2} + y^{2} + 2y(5+y) = 85 \text{ or}$ $2x^{2} + (x-5)^{2} + 2x(x-5) = 85$		6	M1 for substituting a linear equation into the quadratic equation Allow one sign error in their $(5 + y)$ or $(x - 5)$ This mark can be implied by an un simplified correct expansion in a correct equation eg $50+20y+2y^2+y^2+10y+2y^2=85$ or $2x^2+x^2-10x+25+2x^2-10x=85$
	$50+20y+2y^2+y^2+10y+2y^2=85$ or $2x^2+x^2-10x+25+2x^2-10x=85$			M1 for correct expansion of all brackets in a correct equation. Implied by a correct (simplified) quadratic expression. No simplification needed at this stage.
	$5y^{2} + 30y - 35[= 0] \text{ oe eg } y^{2} + 6y - 7[= 0]$ or $5x^{2} - 20x - 60[= 0] \text{ oe eg } x^{2} - 4x - 12[= 0]$			A1 dep on first method mark being awarded A correct 3 term quadratic in either x or y (oe so look for signs reversed, does not need to equal zero eg allow $x^2 - 4x = 12$)
	eg $(5y-5)(y+7)[=0]$ oe or $\frac{-30 \pm \sqrt{(30)^2 - 4 \times 5 \times -35}}{2 \times 5}$ oe or $5(y+3)^2 - 80$ and $y = \pm \sqrt{\frac{80}{5}} - 3$ oe eg $(x-6)(x+2)[=0]$ oe			M1 dependent on one of the two previous M marks. Solving their 3 term quadratic equation using any correct method. If the quadratic is correct then the method may be implied by 6 and -2 or by 1 and -7. Working must be shown if their quadratic is incorrect to gain this method mark. Condone incorrect labelling
	-2 and 6 or -7 and 1			A1 dep M3 and a correct quadratic For both x values correct or both y values correct Condone incorrect labelling
		Correct pairings x = 6, y = 1 x = -2, y = -7		A1 dep M3 and a correct quadratic For both pairs correct, must show unambiguous pairings. Allow as coordinates (6, 1) and (-2, -7) isw transcription errors eg exchanging <i>x</i> and <i>y</i> values. Correct answer(s) with no working scores no marks
	wr			Total 6 marks

Question	Working	Answer	Mark	Notes
12			4	M1 for knowing that the cube root of a number is the same as raising
	$\left[\sqrt[3]{25} = \right] (25)^{\frac{1}{3}} \text{ oe or } (5^2)^{\frac{1}{3}} \text{ oe}$			to the power $\frac{1}{3}$
				may be written as a correct statement embedded within $(\sqrt[3]{25})^{6(2a-3)}$
				eg $\left(25^{\frac{1}{3}}\right)^{6(2a-3)}$ oe or $\left(\left(5^{2}\right)^{\frac{1}{3}}\right)^{6(2a-3)}$ oe or $\left(25^{2}\right)^{(2a-3)}$ oe
				M1 implies the previous method mark
				for writing $(\sqrt[3]{25})^{6(2a-3)}$ correctly as a power of 5
	$\left[\left(\sqrt[3]{25} \right)^{6(2a-3)} = \right] 5^{8a-12}$			eg as $5^{\frac{2}{3} \times 6(2a-3)}$ or $5^{\frac{2}{3}(12a-18)}$ or $5^{4(2a-3)}$ or 5^{8a-12}
	or $ \left[35 \times \left(\sqrt[3]{25} \right)^{6(2a-3)} = \right] [7 \times] 25^{\frac{1}{2}} \times 25^{4a-6} $			or for writing $35 \times \left(\sqrt[3]{25}\right)^{6(2a-3)}$ correctly as a power of (7 and) 25 eg $\left[7 \times\right] 25^{\frac{1}{2}} \times 25^{\frac{1}{3} \times 6(2a-3)}$ We can allow brackets in the power but not a base raised to a power to a power eg $\left(5^2\right)^{4a-6}$
	$\frac{[7\times]5\times5^{\frac{2}{3}\times6(2a-3)}}{[7\times]5^{2(2a+1)}} \text{ or } \frac{[7\times]5\times5^{8a-12}}{[7\times]5^{4a+2}} \text{ oe}$ or $[7\times]5\times5^{8a-12} = [7\times]5^{4a+2}\times5^{w} \text{ oe}$ or $8a-12+1-4a-2 \text{ oe}$			M1 implies the previous method marks for use of only powers of 5 (and 7) on numerator and denominator (powers of 5 but not necessarily a single power). Needs to be as a correct single statement so not as two parts etc
		4 <i>a</i> –13		A1 condone 5^{4a-13} Do not allow $2w = 4a - 13$
	cas			Total 4 marks